Latest

Make Machine Learning Interpretability More Rigorous

This Domino Data Science Field Note covers a proposed definition of machine learning interpretability, why interpretability matters, and the arguments for considering a rigorous evaluation of...

Learn from the Reproducibility Crisis in Science

Key highlights from Clare Gollnick’s talk, “The limits of inference: what data scientists can learn from the reproducibility crisis in science”, are covered in this Domino...

Feature Engineering: A Framework and Techniques 

This Domino Field Note provides highlights and excerpted slides from Amanda Casari’s “Feature Engineering for Machine Learning” talk at QCon Sao Paulo. Casari is the Principal...

Three Simple Worrying Stats Problems

In this guest post, Sean Owen, writes about three data situations that provide ambiguous results and how causation helps clarifies the interpretation of data. A version...

Classify all the Things (with Multiple Labels)

Derrick Higgins of American Family Insurance presented a talk, “Classify all the Things (with multiple labels): The most common type of modeling task no one talks about”...

Avoiding a Data Science Hype Bubble

In this post, Josh Poduska, Chief Data Scientist at Domino Data Lab, advocates for a common taxonomy of terms within the data science industry. The proposed...

Model Evaluation

This Domino Data Science Field Note provides some highlights of Alice Zheng’s report, "Evaluating Machine Learning Models", including evaluation metrics for supervised learning models and offline...

Data Science Models Build on Each Other

Alex Leeds, presented “Building Up Local Models of Customers” at a Domino Data Science Popup. Leeds discussed how the Squarespace data science team built models to...

On Ingesting Kate Crawford’s “The Trouble with Bias”

Kate Crawford discussed bias at a recent SF-based City Arts and Lectures talk and a recording of the discussion will be broadcast, May 6th, on KQED and...

Data Science is more than Machine Learning 

This Domino Data Science Field Note provides highlights and video clips from Addhyan Pandey’s Domino Data Pop-Up talk, “Leveraging Data Science in the Automotive Industry”. Addhyan...

Bias: Breaking the Chain that Holds Us Back

Speaker Bio: Dr. Vivienne Ming was named one of 10 Women to Watch in Tech by Inc. Magazine, she is a theoretical neuroscientist, entrepreneur, and author. She...

The Machine Learning Reproducibility Crisis

Pete Warden is the Technical Lead on the TensorFlow Mobile Embedded Team at Google doing Deep Learning. He is formerly the CTO of Jetpac, which was...

Reproducible Machine Learning with Jupyter and Quilt

In this guest blog post, Aneesh Karve, Co-founder and CTO of Quilt, demonstrates how Quilt works in conjunction with Domino's Reproducibility Engine to make Jupyter notebooks...